More Examples for extra practice

1. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin \left((3+x)^{2}\right)-\sin 9}{x}
$$

Hint: Recognize it as a derivative.
2. Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f_{n}(x)=\left\{\begin{array}{rl}
x^{n} & x>0 \\
0 & x=0 \\
-x^{n} & x<0
\end{array}\right.
$$

By verifying the definition prove that for all $n \geq 1$, the function f_{n} is $n-1$ times differentiable with $f_{n}^{(n-1)}$ is continuous on \mathbb{R} but f_{n} is not n times differentiable.
3. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{\pi}{x^{2}}\right) & \text { if } x>0 \\
0 & \text { if } x \leq 0
\end{array}\right.
$$

i) Use the definition to show that g is differentiable at $x=0$ and find the value of $g^{\prime}(0)$.
ii) Use the Chain Rule for Differentiation to find $g^{\prime}(x)$ for all $x \neq 0$.
iii) Calculate

$$
g^{\prime}\left(\frac{1}{\sqrt{2 n}}\right)
$$

where $n \in \mathbb{N}$.
iv) Prove that $\lim _{x \rightarrow 0} g^{\prime}(x)$ does not exist and so g^{\prime} is not continuous.

Aside: In the previous question a second derivative existed, was continuous but not differentiable. In this question, the first derivative existed but was not continuous. By examining the family of functions $x^{k} \sin \left(\pi / x^{\ell}\right)$ for integers k and ℓ you can construct functions that have exactly the number of derivatives you want at a point but then its last derivative is either not continuous at that point or, if continuous, not differentiable.
4. Using the Mean Value Theorem prove that

$$
\arcsin x<\frac{x}{\sqrt{1-x^{2}}}
$$

for all $0<x<1$.
5. Using the Mean Value Theorem prove that

$$
\ln (1+x)>\frac{x}{1+\frac{x}{2}}
$$

for $x>0$.
6. (Exam 2009)
i) Prove that

$$
2^{x}=x^{2}
$$

has at least three real solutions.
ii) Prove that it has exactly three real solutions.
7. Assume that f is continuous on $[a, b]$ and differentiable on (a, b). Prove that if $a>0$ there exists $c \in(a, b)$ such that

$$
f(b)=f(a)+\ln \left(\frac{b}{a}\right) c f^{\prime}(c),
$$

8. i) Prove that

$$
\arcsin x+\arccos x
$$

is constant on $(-1,1)$.
What is the value of this constant?
Hint: look at the derivative.
ii) What can you say about

$$
\arctan u+\arctan \frac{1}{u}
$$

for $u>0$.
9. Do not use L'Hôpital's Rule to evaluate the following limits i-iv, but instead assume the following results:

$$
\lim _{x \rightarrow 0} \frac{\cos -1}{x^{2}}=-\frac{1}{2} \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=-\frac{1}{6} .
$$

i)

$$
\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{3}},
$$

Hint. Write $x \cos x-\sin x=x \cos x-x+x-\sin x$.
ii)

$$
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}},
$$

iii)

$$
\lim _{x \rightarrow 0} \frac{\tan x-x}{\tan ^{3} x}
$$

iv)

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x-3 x}{x^{3}}
$$

v)

$$
\lim _{x \rightarrow 0} \frac{\sin 3 x-3 \sin x}{x^{3}}
$$

10. In a question on Sheet 7 , you were asked to show that

$$
f(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

is differentiable at $x=0$.
Write down $f^{\prime}(x)$ for all $x \in \mathbb{R}$. Calculate $f^{(2)}(0)$.
Hint you may recall that $\lim _{x \rightarrow 0}(\sin x-x) / x^{3}=-1 / 6$.
11. Use the Composition Rule for Differentiation to prove
i)

$$
\frac{d}{d y} \arcsin \left(\frac{1}{\cosh y}\right)=-\frac{1}{\cosh y}
$$

for $y>0$.
ii)

$$
\frac{d}{d y}(\arctan (\sinh y))=\frac{1}{\cosh y}
$$

for $y \in \mathbb{R}$.
iii) Can you make up an example for arccos with an appropriate hyperbolic function?
12. i) Calculate the first six Taylor Polynomials

$$
\left.T_{n, 0}(\ln (1+x))\right|_{x=1}, \quad 0 \leq n \leq 5 .
$$

Calculate the first 6 approximations to $\ln 2$, using these polynomials with an appropriate choice of x.
ii) Give the Taylor Series for $\ln (1-x)$ and

$$
\ln \left(\frac{1+x}{1-x}\right)
$$

about 0 , along with their intervals of convergence.
Note: The series for $\ln ((1+x) /(1-x))$ is due to Gregory, 1668
iii) Calculate the first 6 approximations to $\ln 2$, using the first six Taylor polynomials

$$
T_{n, 0}(\ln (1-x)), 0 \leq n \leq 5,
$$

with an appropriate choice of x.
iv) Calculate the first 6 approximations to $\ln 2$, using the first six Taylor polynomials

$$
T_{n, 0}\left(\ln \left(\frac{1+x}{1-x}\right)\right)
$$

$$
0 \leq n \leq 5 \text {, with an appropriate choice of } x \text {. }
$$

13. What is the maximum possible error in using $T_{5,0} f(x)$ to approximate $f(x)=\sin x$ on the interval $[-0.25,0.25]$?

What is the actual error when using the Taylor polynomial to approximate $\sin \left(12^{\circ}\right)$?
14. Approximate $f(x)=\sqrt[3]{x}$ by the quadratic $T_{2,8} f(x)$.

How accurate is the approximation when $7 \leq x \leq 9$?
15. Show that the Taylor series for $g(x)=(1+x)^{1 / 2}$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n)!}{4^{n}(1-2 n)(n!)^{2}} x^{n}
$$

Hint You need to show that

$$
g^{(n)}(0)=(-1)^{n-1} \frac{(2 n)!}{4^{n} n!(2 n-1)}
$$

for all $n \geq 1$.
16. Show that
i) the Taylor series for $f(x)=1 / \sqrt{(1+x)}$ around $x=0$ is

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{(2 n)!}{4^{n}(n!)^{2}} x^{n}
$$

(Hint Try to reuse work you have already done. Note that appears in the solution of Question as $2 g^{(1)}(x)$, with $g(x)=\sqrt{1+x}$.)
ii) the Taylor series for $h(x)=1 / \sqrt{\left(1-x^{2}\right)}$ around $x=0$ is

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}} y^{2 n}
$$

(Hint Use the fact that if the Taylor series of $f(x)$ is $\sum_{n=0}^{\infty} a_{n} x^{n}$ then the Taylor series of $f\left(\alpha x^{k}\right)$ is $\sum_{n=0}^{\infty} a_{n}\left(\alpha x^{k}\right)^{n}$.)
iii) the Taylor Series for $\arcsin x$ around $x=0$ is

$$
\sum_{\ell=0}^{\infty} \frac{(2 \ell)!x^{2 \ell+1}}{4^{\ell}(2 \ell+1)(\ell!)^{2}}
$$

(Note I am not asking for you to prove that any of these series converge to the given function but you might want to think about how you could do this.)
17. Let $f(x)=\sin x$.
i) Prove that

$$
f^{(n)}\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\left(\cos \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)\right)
$$

for all $n \geq 1$.
ii) Show that for all $n \geq 1$ both sides of the identity,

$$
\begin{equation*}
\cos \left(n \frac{\pi}{2}\right)+\sin \left(n \frac{\pi}{2}\right)=(-1)^{n(n-1) / 2} \tag{1}
\end{equation*}
$$

are the same.
Hint: Any n can be written as $n=4 m+r$, where r, the remainder on dividing by 4 , takes only the values $r=0,1,2$ or 3 . Show that the values of both sides of (4) depend only on r, and so there are only 4 cases to check.
iii) Deduce that the Taylor series for $\sin x$ around $a=\pi / 4$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n(n-1) / 2}}{\sqrt{2} n!}\left(x-\frac{\pi}{4}\right)^{n}
$$

Prove that this series converges to $\sin x$ for all x.

